Molecular targeting and treatment of EGFRvIII-positive gliomas using boronated monoclonal antibody L8A4.

نویسندگان

  • Weilian Yang
  • Rolf F Barth
  • Gong Wu
  • Shinji Kawabata
  • Thomas J Sferra
  • Achintya K Bandyopadhyaya
  • Werner Tjarks
  • Amy K Ferketich
  • Melvin L Moeschberger
  • Peter J Binns
  • Kent J Riley
  • Jeffrey A Coderre
  • Michael J Ciesielski
  • Robert A Fenstermaker
  • Carol J Wikstrand
چکیده

PURPOSE The purpose of the present study was to evaluate a boronated EGFRvIII-specific monoclonal antibody, L8A4, for boron neutron capture therapy (BNCT) of the receptor-positive rat glioma, F98(npEGFRvIII). EXPERIMENTAL DESIGN A heavily boronated polyamido amine (PAMAM) dendrimer (BD) was chemically linked to L8A4 by two heterobifunctional reagents, N-succinimidyl 3-(2-pyridyldithio)propionate and N-(k-maleimidoundecanoic acid)hydrazide. For in vivo studies, F98 wild-type receptor-negative or EGFRvIII human gene-transfected receptor-positive F98(npEGFRvIII) glioma cells were implanted i.c. into the brains of Fischer rats. Biodistribution studies were initiated 14 days later. Animals received [(125)I]BD-L8A4 by either convection enhanced delivery (CED) or direct i.t. injection and were euthanized 6, 12, 24, or 48 hours later. RESULTS At 6 hours, equivalent amounts of the bioconjugate were detected in receptor-positive and receptor-negative tumors, but by 24 hours the amounts retained by receptor-positive gliomas were 60.1% following CED and 43.7% following i.t. injection compared with 14.6% ID/g by receptor-negative tumors. Boron concentrations in normal brain, blood, liver, kidneys, and spleen all were at nondetectable levels (<0.5 microg/g) at the corresponding times. Based on these favorable biodistribution data, BNCT studies were initiated at the Massachusetts Institute of Technology Research Reactor-II. Rats received BD-L8A4 ( approximately 40 microg (10)B/ approximately 750 mug protein) by CED either alone or in combination with i.v. boronophenylalanine (BPA; 500 mg/kg). BNCT was carried out 24 hours after administration of the bioconjugate and 2.5 hours after i.v. injection of BPA for those animals that received both agents. Rats that received BD-L8A4 by CED in combination with i.v. BPA had a mean +/- SE survival time of 85.5 +/- 15.5 days with 20% long-term survivors (>6 months) and those that received BD-L8A4 alone had a mean +/- SE survival time of 70.4 +/- 11.1 days with 10% long-term survivors compared with 40.1 +/- 2.2 days for i.v. BPA and 30.3 +/- 1.6 and 26.3 +/- 1.1 days for irradiated and untreated controls, respectively. CONCLUSIONS These data convincingly show the therapeutic efficacy of molecular targeting of EGFRvIII using either boronated monoclonal antibody L8A4 alone or in combination with BPA and should provide a platform for the future development of combinations of high and low molecular weight delivery agents for BNCT of brain tumors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular targeting and treatment of composite EGFR and EGFRvIII-positive gliomas using boronated monoclonal antibodies.

PURPOSE The purpose of the present study was to evaluate the anti-epidermal growth factor receptor (EGFR) monoclonal antibody (mAb), cetuximab, (IMC-C225) and the anti-EGFRvIII mAb, L8A4, used in combination as delivery agents for boron neutron capture therapy (BNCT) of a rat glioma composed of a mixture of cells expressing either wild-type (F98(EGFR)) or mutant receptors(F98(npEGFRvIII)). EX...

متن کامل

Development of a syngeneic rat brain tumor model expressing EGFRvIII and its use for molecular targeting studies with monoclonal antibody L8A4.

PURPOSE The goals of the present study were 2-fold: (a) to develop and characterize a rat brain tumor model that could be used for studies of molecular targeting of EGFRvIII and (b) to study the tumor localizing properties of radiolabeled monoclonal antibody (mAb) L8A4, specifically directed against EGFRvIII, following systemic, i.t., and convection enhanced delivery to brain tumor-bearing rats...

متن کامل

Radioiodination via D-amino acid peptide enhances cellular retention and tumor xenograft targeting of an internalizing anti-epidermal growth factor receptor variant III monoclonal antibody.

The mutant epidermal growth factor receptor variant III (EGFRvIII) has been found on gliomas and other tumors but not on normal tissues, including those that express the wild-type receptor. Monoclonal antibodies (mAbs) specific for EGFRvIII are rapidly internalized and degraded after binding to EGFRvIII-expressing cells. If anti-EGFRvIII mAbs are to be useful for radioimmunotherapy, then method...

متن کامل

Improved targeting of an anti-epidermal growth factor receptor variant III monoclonal antibody in tumor xenografts after labeling using N-succinimidyl 5-iodo-3-pyridinecarboxylate.

Monoclonal antibody (mAb) L8A4, specific for the tumor-associated mutant epidermal growth factor receptor variant III (EGFRvII), is internalized and degraded after cell binding. Four paired-label experiments were performed in athymic mice bearing EGFRvIII-positive xenografts to determine the suitability of N-succinimidyl 3-iodo-5-pyridinecarboxylate (SIPC) for labeling this internalizing mAb. I...

متن کامل

Anti-Epidermal Growth Factor Receptor Variant III Monoclonal Retention and Tumor Xenograft Targeting of an Internalizing Radioiodination via d-Amino Acid Peptide Enhances Cellular

The mutant epidermal growth factor receptor variant III (EGFRvIII) has been found on gliomas and other tumors but not on normal tissues, including those that express the wild-type receptor. Monoclonal antibodies (mAbs) specific for EGFRvIII are rapidly internalized and degraded after binding to EGFRvIII-expressing cells. If anti-EGFRvIII mAbs are to be useful for radioimmunotherapy, then method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 12 12  شماره 

صفحات  -

تاریخ انتشار 2006